Презентация - коррозия металлов и способы защиты от коррозии. Коррозия металлов и способы защиты от неё Проект - презентацию выполнили: Ветров Константин Евтеев Кирилл Кириченко Евгений Суслов Владимир. Презентация на тему коррозия металлов

Коррозия металлов

преподаватель химии и биологии ГБОУ НПО РО ПУ № 61 имени Героя Советского Союза Вернигоренко И.Г.


- выяснить, что такое коррозия, её виды, механизм (на примере коррозии железа), способы защиты от коррозии;

Отработать умение выполнять эксперимент, делать выводы из увиденного, составлять полуреакции окисления и восстановления исходя из положения металлов в электрохимическом ряду напряжений.

Цели урока


  • - реакции, протекающие с изменением степеней окисления элементов, называются ….
  • элемент, повышающий степень окисления в результате реакции, называется …
  • процесс присоединения электронов называется ….
  • окислительно-восстановительный процесс, протекающий на электродах при прохождении постоянного электрического тока, называется …
  • катод заряжен …
  • на аноде идёт процесс …
  • при электролизе расплава бромида калия на катоде восстанавливается …
  • при электролизе расплава гидроксида калия на аноде выделяется газообразный …
  • определить окислитель и восстановитель в схеме реакции:

Zn + AgNO 3 – Zn(NO 3 ) 2 + Ag

Химический диктант


В настоящее время мы являемся свидетелями разрушения архитектурных сооружений и конструкций. От кислотных дождей катастрофически страдают памятники (здания и скульптуры), выполненные из известняка или мрамора.


Слово коррозия происходит от латинского corrodere, что означает разъедать. Коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды.

Коррозия


А) газы (O 2 ,SO 2 , H 2 S, Cl 2 , NH 3 , NO, NO 2 , H 2 O-пар и т.д.); сажа – адсорбент газов;

Б) электролиты: щёлочи, кислоты, соли;

В) ионы Сl - , влажность воздуха;

Г) макро- и микроорганизмы;

Е) блуждаюший электрический ток;

Ж) разнородность металлов.

Причины коррозии


КОРРОЗИЯ - РЖАВАЯ КРЫСА,

ГРЫЗЕТ МЕТАЛЛИЧЕСКИЙ ЛОМ,

В ШЕФНЕР

4Fe + 6H 2 O + 3O 2 = 4Fe(OH) 3

Коррозийные процессы


Коррозия

Химическая

Электрохимическая

Виды коррозии


Коррозия металлов

По характеру разрушений

По виду коррозийной среды

По процессам

Электрохимическая

Равномерная

Почвенная

Неравномерная

Химическая

Жидкостная

Атмосферная

Классификация


Химическая коррозия обусловлена взаимодействием

металлов с сухими газами или жидкостями,

не проводящими электрического тока

Как правило, протекает

Продукты коррозии образуются непосредственно в местах соприкосновения металла с агрессивной средой

при повышенных

температурах

Коррозионно-активные среды

Скорость коррозионного процесса определяется не только природой металла, но и свойствами образовавшихся продуктов

Оксидная пленка

Прочная, защитная

Рыхлая

Al 2 O 3 , ZnO, NiO, Cr 2 O 3, TiO 2

FeO, Fe 2 O 3 , Fe 3 O 4

Химическая коррозия


Электрохимическая коррозия осуществляется за счет

электрохимических реакций, происходящих

на поверхности металла, находящегося в контакте

с раствором электролита. Она сопровождается

возникновением электрического тока

Пример контактной коррозии


Li, K, Ba, Ca, Na, Mg, Al, Mn, Zn, Cr, Fe, Ni, Sn, Pb, H 2 , Cu, Hg, Ag, Pt, Au

Ослабление восстановительных свойств, активности

Электрохимический ряд напряжений металлов


СПЛОШНАЯ

не представляет особой опасности для конструкций и аппаратов особенно в тех случаях, когда потери металлов не превышают технически обоснованных норм. Ее последствия могут быть сравнительно легко учтены.

МЕСТНАЯ

потери металла небольшие. Наиболее опасна – точечная коррозия(образование сквозных поражений, точечных полостей – так называемых питтингов. Местной коррозии благоприятствуют морская вода, растворы солей, в частности галогенидных (хлорид натрия, магния и др.). Опасность местной коррозии состоит в том, что, снижая прочность отдельных участков, она резко уменьшает надежность конструкций, сооружений, аппаратов.

Коррозия металлов


Цинковую гранулу опускаем в раствор соляной кислоты. Наблюдаем выделение водорода.

Zn + 2HCl = ZnCl 2 + H 2

Сначала реакция протекает быстро, а затем постепенно замедляется. Это обусловлено тем, что ионы цинка переходят в раствор и образуют у поверхности металла слой положительно заряженных ионов. Этот слой является барьером, препятствующим проникновению одноимённо заряженных ионов водорода к поверхности металла. Кроме того, при растворении цинка в его кристаллической решётке накапливаются электроны, которые затрудняют дальнейший переход поверхностных ионов цинка в раствор. Это и приводит к замедлению взаимодействия цинка с кислотой.

Опыт №1.


К цинку прикасаемся медной проволокой – растворение цинка усиливается.

Это объясняется следующим образом: медь в ряду напряжений металлов находится за водородом и с кислотами, у которых окислителем являются ионы водорода, не взаимодействуют. Поэтому в кристаллической решётке меди свободные электроны не накапливаются. При контакте этих двух металлов свободные электроны цинка переходят к меди и восстанавливают ионы водорода:

+ + 2е = Н 2 0

В этом случае наряду с химическими процессами (отдача электронов) протекают и электрические (перенос электронов от одного металла к другому).

Освободившись от избыточных электронов цинк снова окисляется:

Zn 0 – 2e = Zn 2+

Кроме этого, поверхностные ионы цинка теперь не удерживаются электростатическим притяжением электронов и распределяются по раствору, поэтому цинк в контакте с медью растворяется быстрее. Таким образом, усиление коррозии цинка в контакте с медью объясняется возникновением короткозамкнутого гальванического элемента. В котором цинк выполняет роль анода, а медь – катода.

Опыт №2.


Медную и цинковую пластинки в растворе НСl соединяем проводником, наблюдаем выделение водорода на медной пластинке.

Анод (Zn): Zn 0 – 2e – Zn 2+

Катод (Сu): 2H + + 2e – H 2 0

Аналогично происходит коррозия металлов, которые неоднородны и содержат примеси. В присутствии электролита одни участки поверхности металла играют роль анода, другие – катода.

На катоде происходит окисление атомов металла: Ме 0 – ne = Me n+

При этом на металле остаются избыточные электроны. Роль анода выполняет более активный металл.

На катоде происходит принятие электронов, которые поступают с анода, каким-либо окислителем. В кислотах в качестве окислителя выступают ионы водорода. В нейтральной среде в качестве окислителя преимущественно выступает растворённый кислород, тогда на катоде протекает процесс: О 2 + 4е + 2Н 2 О = 4ОН -

Опыт №3.

1. Легирование металлов, т.е. получение сплавов, которые устойчивы к коррозии.

2. Изоляция металла от окружающей среды достигается применением защитных покрытий. Различают три вида покрытий: (лаки, краски, эмали); химические покрытия (фосфатные, оксидные, нитридные); металлические (никелирование, хромирование, лужение – покрытие оловом). Различают катодные и анодные покрытия. Если защищаемый металл покрыт менее активным металлом, то это – катодное покрытие, например железо покрытое оловом. При нарушении целостности катодного покрытия возникает гальванический элемент, в котором анод – железо разрушается, а катод – олово – остаётся защищённым. Если защищаемый металл покрыт более активным металлом, то это анодное покрытие, например железо покрыто цинком. При нарушении целостности анодного покрытия возникает гальванический элемент, где анод – цинк – разрушается, а катод – железо – остаётся защищённым.

Протекторная защита. К защищаемой металлической конструкции

присоединяют листы (протекторы) из более активного металла. Протектор разрушается, предохраняя защищаемый металл. Данным способом защищают трубопроводы и ёмкости под землёй, корпуса судов и корабельных винтов в морской воде.

4. Изменение свойств агрессивной среды. Достигается двумя способами: 1) удаление из агрессивно сред веществ, которые усиливают коррозию металлов, например кислород кипячением; 2) добавлением в агрессивную среду веществ, которые замедляют коррозию (ингибиторы).

Способы защиты металлов от коррозии .


Цинковая пластинка опускается в сосуд с ингибированной соляной кислотой. Реакция не происходит. Ингибиторами могут быть мочевина, сульфит натрия, тиосульфат натрия, нитрит натрия, фосфаты, карбонаты, силикаты.

Опыт №4.


Контрольные вопросы:

1. Дайте определение коррозии металлов.

2. Какие виды коррозии металлов вам известны.

3. Что способствует процессу коррозии?

4. Рассмотрите процесс коррозии при контакте железа с более активным металлом. Напишите уравнения реакций окисления и восстановления.

4. Зная, что такое коррозия и что ей способствует, предложите способы борьбы с коррозией железных изделий как наиболее распространённых.

5. Какие способы борьбы с коррозией вам известны?

6. Особый интерес представляет протекторная защита. На чём основано её действие? Каков её недостаток?

7. На чём основана катодная защита?

Закрепление знаний


Разрушить проще, чем построить. Потерять гораздо легче, чем найти. Бороться с коррозией нелегко, но возможно. И одно из многочисленных тому доказательств – Эйфелева башня (слайд 38), которую строили в расчёте на то, что прослужит она лет тридцать и её снесут. А она вот уже второе столетие украшает собою Париж…

Итоги урока


1. Для хозяйственных нужд вам необходимо приобрести два железных ведра. В хозяйственном магазине оказались два ведра двух видов: оцинкованное (железо покрыто цинком) и лужёные (железо покрыто оловом). Какое из этих вёдер прослужит дольше? Какому виду вёдер вы отдадите предпочтение? Дайте обоснованный ответ.

2. Вы – слесарь. На стальную деталь (сталь в основном содержит железо и углерод до 2%) поставили медную заклёпку. Знаете ли вы, что раньше разрушится: деталь или заклёпка? Дайте обоснованный ответ.

3. К стенкам парового котла, корпуса судна приваривают листы более активного металла (цинка, магния). Какой металл будет разрушатся в первую очередь? Дайте обоснованный ответ.

4.Одна железная пластина покрыта магнием, а другая медью. На какой пластинке образуется ржавчина при нарушении целостности покрытия? Дайте обоснованный ответ.

Творческие задания.


Учебник «Химия» для профессий НПО и СПО технического цикла О.Г. Габриелян, И.Г. Остроумов, М., «Академия» 2014 год, 256 с. Стр.

Рабочая тетрадь «Металлы и неметаллы»: кроссворд № 1 стр. 27;

Домашнее задание

Описание презентации ПРЕЗЕНТАЦИЯ на тему « « Коррозия металлов по слайдам

Коррозия металлов Введение Химическая коррозия Электрохимическая коррозия Сущность процессов коррозии Способы защиты от коррозии Атмосферная коррозия стали Ингибиторы коррозии металлов

Введение Слово коррозия происходит от латинского «corrodere» , что означает разъедать. Хотя коррозию чаще всего связывают с металлами, но ей подвергаются также камни, пластмассы и другие полимерные материалы и дерево. Например, в настоящее время мы являемся свидетелями большого беспокойства широких слоев людей в связи с тем, что от кислотных дождей катастрофически страдают памятники (здания и скульптуры), выполненные из известняка или мрамора. Таким образом, коррозией называют самопроизвольный процесс разрушения материалов и изделий из них под химическим воздействием окружающей среды. Процессы физического разрушения к коррозии не относят, хотя часто они наносят не меньший вред памятникам культуры. Их называют истиранием, износом, эрозией.

Металлы составляют одну из основ цивилизации на планете Земля. Среди них как конструкционный материал явно выделяется железо. Объем промышленного производства железа примерно в 20 раз больше, чем объем производства всех остальных металлов, вместе взятых. Широкое внедрение железа в промышленное строительство и транспорт произошло на рубеже XVIII. . . XIX вв. В это время появился первый чугунный мост, спущено на воду первое судно, корпус которого был изготовлен из стали, созданы первые железные дороги. Однако начало практического использования человеком железа относят к IX в. до н. э. Именно в этот период человечество из бронзового века перешло в век железный. Тем не менее история свидетельствует о том, что изделия из железа были известны в Хеттском царстве (государство Малой Азии), а его расцвет относят к XIV. . . XIII вв. до н. э.

В природе, хотя и очень редко, но встречается самородное железо. Его происхождение считают метеоритным, т. е. космическим, а не земным. Поэтому первые изделия из железа (они изготавливались из самородков) ценились очень высоко – гораздо выше, чем из серебра и даже золота.

Несмотря на широкое внедрение в нашу сегодняшнюю жизнь полимерных материалов, стекла, керамики, основным конструкционным материалом продолжает оставаться железо и сплавы на его основе. С изделиями из железа мы на каждом шагу встречаемся в быту и знаем, как много хлопот доставляют его ржавление и сама ржавчина. Ржавлением называют только коррозию железа и его сплавов. Другие металлы коррозируют, но не ржавеют. Хотя коррозируют практически все металлы, в повседневной жизни человек чаще всего сталкивается с коррозией железа.

Химическая коррозия Химическую коррозию стали вызывают сухие газы и жидкости, не имеющие характера электролитов, например органические соединения или растворы неорганических веществ в органических растворителях, Химическая коррозия не сопровождается возникновением электрического тока. Она основана на реакции между металлом и агрессивным реагентом. Этот вид коррозии протекает в основном равномерно по всей поверхности металла. В связи с этим химическая коррозия менее опасна, чем электрохимическая.

Продукты коррозии могут образовывать на поверхности металла плотный защитный слой, затормаживающий её дальнейшее развитие, или же пористый слой, не защищающий поверхность от разрушающего воздействия среды. В этом случае процесс коррозии продолжается до полного разрушения материала или период времени пока будет действовать агрессивная среда. Наиболее часто на практике встречается газовая коррозия стали, вызванная воздействием О 2 , SO 2 , H 2 S, CI, НС 1, NO 3 , CO 2 , CO и H 2.

Электрохимическая коррозия Электрохимическая коррозия происходит при взаимодействии металлов с жидкими электролитами, в основном растворами кислот, оснований и солей. Механизм процесса коррозии зависит от структуры металла, а так же от типа электролита. Сталь, как всякий металл, имеет кристаллическое строение, при котором атомы располагаются в соответствующем порядке, образуя характерную пространственную решетку. Кристаллы железа имеют строение, значительно отличающиеся от идеальной схемы, так как имеются пустоты, не занятые атомами металла, трещины, включения примесей к газов.

Металлы обладают хорошей электропроводностью, что обусловлено наличием свободных электронов, движение которых создает электрический ток. Числу свободных электронов соответствует эквивалентное число ион- атомов, т. е. атомов, утративших один или более электрон. В случае возникновения на концах металлического стержня разности потенциалов электроны движутся от полюса с высшим потенциалом к противоположному полюсу. Металлы, обладающие электронной проводимостью, являются проводниками первого рода, а электролиты которые имеют ионную проводимость проводниками второго рода.

В зависимости от типа и содержания растворённых в воде солей изменению подвергаются не только нормальные потенциалы, но даже положение металла в ряду потенциалов.

Сущность процессов коррозии. Коррозия металлов чаще всего сводится к их окислению и превращению в оксиды. В частности, коррозия железа может быть описана упрощенным уравнением 4 Fe + 3 O 2 + 2 H 2 О = 2 Fe 2 O 3·H 2 О Гидратированный оксид железа Fе 2 O 3·H 2 О и является тем, что люди называют ржавчиной. Это рыхлый порошок светло-коричневого цвета. Многие металлы при коррозии покрываются плотной, хорошо скрепленной с металлами оксидной пленкой, которая не позволяет кислороду воздуха и воде проникнуть в более глубокие слои и потому предохраняет металл от дальнейшего окисления. Например, алюминий – очень активный металл и теоретически с водой должен был бы взаимодействовать в соответствии с уравнением 2 Al + 3 H 2 О = Al 2 O 3 + 3 H

Строго отделить химическую коррозию от электрохимической трудно, а иногда и невозможно. Дело в том, что электрохимическая коррозия часто связана с наличием в металле случайных примесей или специально введенных легирующих добавок.

Способы защиты от коррозии. Проблема защиты металлов от коррозии возникла почти в самом начале их использования. Люди пытались защитить металлы от атмосферного воздействия с помощью жира, масел, а позднее и покрытием другими металлами и прежде всего легкоплавким оловом (лужением). В трудах древнегреческого историка Геродота (V в. до н. э.) уже имеется упоминание о применении олова для защиты железа от коррозии.

Для защиты чугунных и стальных водяных труб от коррозии используют цементные покрытия. Поскольку коэффициенты теплового расширения портландцемента и стали близки, а стоимость цемента невысокая, то он довольно широко применяется для этих целей. Недостаток портландцементных покрытий тот же, что и эмалевых, – высокая чувствительность к механическим ударам.

Широко распространенным способом защиты металлов от коррозии является покрытие их слоем других металлов. Покрывающие металлы сами коррозируют с малой скоростью, так как покрываются плотной оксидной пленкой. Покрывающий слой наносят различными методами: кратковременным погружением в ванну с расплавленным металлом (горячее покрытие), электроосаждением из водных растворов электролитов (гальваническое покрытие), напылением (металлизация), обработкой порошками при повышенной температуре в специальном барабане (диффузионное покрытие), с помощью газофазной реакции, например 3 Cr. Cl 2 + 2 Fe – → 2 Fe. Cl 3 + 3 Cr (в сплаве с Fe).

Имеются и другие методы нанесения металлических покрытий, например, разновидностью диффузионного способа защиты металлов является погружение изделий в расплав хлорида кальция Ca. Cl 2, в котором растворены наносимые металлы.

Атмосферная коррозия стали Наиболее часто встречающимся на практике типом коррозии стали является образование ржавчины под влиянием атмосферных воздействий (чаще всего кислорода и влажности), В сухом атмосферном воздухе сталь практически не подвергается коррозии. Атмосферная коррозия носит электрохимический характер, причем электролитом является слой влаги, имеющийся на поверхности металла.

Протекание процессов коррозии в атмосферных условиях аналогично коррозии стали в воде, содержащей кислород. Продукты коррозии, покрывающие металл, представляют собой гидра тированные окиси железа с составом, определяемым формулой Скорость атмосферной коррозии зависит от содержания влаги в воздухе. Повышение относительной влажности воздуха до 70 -75% приводит к сравнительно небольшим потерям стали. При влажности, превышающей эти значения, наблюдается интенсивное ускорение процессов коррозии. Загрязнение воздуха агрессивными продуктами такими, как СО 2, SО 2, CI 2, H 2 S, дым и сажа, усиливает коррозию. Сталь, в течение нескольких летлет подвергавшаяся воздействию промышленной атмосферы, имеет значительно большие потери, чем сталь в условиях сельской местности.

Ингибиторы Применение ингибиторов – один из эффективных способов борьбы с коррозией металлов в различных агрессивных средах (в атмосферных, в морской воде, в охлаждающих жидкостях и солевых растворах, в окислительных условиях и т. д.). Ингибиторы – это вещества, способные в малых количествах замедлять протекание химических процессов или останавливать их. Название ингибитор происходит от лат. inhibere, что означает сдерживать, останавливать. Ингибиторы взаимодействуют с промежуточными продуктами реакции или с активными центрами, на которых протекают химические превращения. Они весьма специфичны для каждой группы химических реакций. Коррозия металлов – это лишь один из типов химических реакций, которые поддаются действию ингибиторов. По современным представлениям защитное действие ингибиторов связано с их адсорбцией на поверхности металлов и торможением анодных и катодных процессов.

Первые ингибиторы были найдены случайно, опытным путем, и часто становились клановым секретом. Известно, что дамасские мастера для снятия окалины и ржавчины пользовались растворами серной кислоты с добавками пивных дрожжей, муки, крахмала. Эти примеси были одними из первых ингибиторов. Они не позволяли кислоте действовать на оружейный металл, в результате чего растворялись лишь окалина и ржавчина.

По данным 1980 г. , число известных науке ингибиторов коррозии превысило 5 тыс. Считают, что 1 т ингибитора дает в народном хозяйстве экономию около 5000 руб. Работа по борьбе с коррозией имеет важнейшее народнохозяйственное значение. Это весьма благодатная область для приложения сил и способностей.

У металлов есть враг, который приводит к огромным
безвозвратным потерям металлов, ежегодно полностью
разрушается около 10% производимого железа. По
данным Института физической химии РАН, каждая
шестая домна в России работает впустую – весь
выплавляемый металл превращается в ржавчину.
Этот враг - коррозия.

Проблема защиты металлов от коррозии
возникла почти в самом начале их
использования. Люди пытались защитить
металлы от атмосферного воздействия с
помощью жира, масел, а позднее и
покрытием другими металлами и, прежде
всего, легкоплавким оловом (лужением). В
трудах древнегреческого историка Геродота
(V в. до н.э.) уже имеется упоминание о
применении олова для защиты железа от
коррозии.

В III до нашей эры на острове Родос был построен
маяк в виде огромной статуи Гелиоса.
Колосс Родосский считался одним из семи чудес света,
однако просуществовал всего 66 лет и рухнул во время
землетрясения. У Колосса Родосского бронзовая
оболочка была
смонтирована на
железном каркасе.
Под действием влажного,
насыщенного солями
средиземноморского воздуха
железный каркас разрушился.

В 20 годы ХХ в. по заказу одного миллионера
была построена роскошная яхта “Зов моря”.
Еще до выхода в открытое море яхта полностью
вышла из строя. Причиной была контактная
коррозия. Днище яхты было обшито медноникелевым сплавом, а рама руля, киль и другие
детали изготовлены из стали. Когда яхта была
спущена на воду. Возник гигантский
гальванический элемент, состоящий из катодаднища, стального анода и электролита – морской
воды. В результате судно затонуло, ни сделав ни
одного рейса.

Что является символом
Парижа? –Эйфелева
башня. Она неизлечима
больна, ржавеет и
разрушается, и только
постоянная
химиотерапия помогает
бороться с этим
смертельным недугом:
её красили 18 раз, отчего
её масса 9000 т
каждыйраз
увеличивается на 70 т.

Коррозия – разрушение металлов и
сплавов под воздействием окружающей
среды. Слово коррозия происходит от
латинского corrodere, что означает
разъедать.

Виды коррозии

Химическая коррозия

Химическая коррозия –
это взаимодействие
металлов с сухими
газами и жидкостями –
неэлектролитами.
Такому виду коррозии
подвергаются турбины,
арматура печей и детали
двигателей внутреннего
сгорания.

Электрохимическая коррозия

Электрохимическая
коррозия – это все
случаи коррозии в
присутствии воды и
жидкостей –
электролитов.

Сущность коррозии.

Коррозия состоит из
двух процессов:
химического – это
отдача электронов и
электрического – это
перенос электронов.

Закономерности коррозии:

1. Если соединены
два разных металла,
то коррозии
подвергается только
более активный, и
пока он полностью
не разрушится, менее
активный защищён.

Закономерности коррозии:

2. Скорость коррозии
тем больше, чем
дальше друг от друга
в ряду напряжений
расположены
соединённые
металлы.

Химизм коррозии.

Способы защиты от коррозии.

Одним из наиболее распространенных
способов защиты металлов от коррозии
является нанесение на их поверхность
защитных пленок: лака, краски, эмали.

Широко распространенным способом защиты
металлов от коррозии является покрытие их
слоем других металлов. Покрывающие
металлы сами корродируют с малой
скоростью, так как покрываются плотной
оксидной пленкой. Производят покрытие
цинком, никелем, хромом и др.

Покрытие другими металлами.

В повседневной жизни человек чаще всего
встречается с покрытиями железа цинком и
оловом. Листовое железо, покрытое
цинком, называют оцинкованным железом,
а покрытое оловом – белой жестью. Первое
в больших количествах идет на кровли
домов, а из второго изготавливают
консервные банки.

Способы защиты от коррозии.

Создание сплавов с
антикоррозионными
свойствами. Для этого
в основной металл
добавляют до 12%
хрома, никеля,
кобальта или меди.

Способы защиты от коррозии.

Изменение состава
среды. Для
замедления коррозии
вводятся
ингибиторы. Это
вещества, которые
замедляют скорость
реакции.

Способы защиты от коррозии.

Применение ингибиторов – один из эффективных
способов борьбы с коррозией металлов в различных
агрессивных средах (в атмосферных, в морской воде, в
охлаждающих жидкостях и солевых растворах, в
окислительных условиях и т.д.). Ингибиторы – это
вещества, способные в малых количествах замедлять
протекание химических процессов или останавливать их.
Название ингибитор происходит от лат. inhibere, что
означает сдерживать, останавливать. Известно, что
дамасские мастера для снятия окалины и ржавчины
пользовались растворами серной кислоты с добавками
пивных дрожжей, муки, крахмала. Эти примеси были
одними из первых ингибиторов. Они не позволяли кислоте
действовать на оружейный металл, в результате чего
растворялись лишь окалина и ржавчина.

Электрозащита.

1. Протекторная защита.
К основной конструкции
прикрепляются
заклёпки или пластины
из более активного
металла, которые и
подвергаются
разрушению. Такую
защиту используют в
подводных и подземных
сооружениях.

Электрозащита.

2. Пропускание
электрического тока
в направлении,
противоположном
тому, который
возникает в процессе
коррозии.

1 из 38

Презентация - Коррозия металлов и способы защиты от коррозии

Текст этой презентации

Урок химии по теме “Коррозия металлов и способы защиты от коррозии"
Подготовила учитель химии СШ РГКП «Республиканский центр реабилитации для детей и подростков» Лепесбаева Сандугаш Кайратовна

Цели урока:
сформировать представление учащихся о механизме коррозийных процессов, об их последствиях и способах защиты от коррозии; развивать умение работать с опорным конспектом, наблюдать, делать выводы; воспитывать эмоциональное отношение к изучаемому явлению.

Чугун
Сплав железа с углеродом (2-4%)
Сталь
Сплав железа с углеродом (меньше 2%)
Применяется в фасонном литье
При добавлении легирующих элементов улучшает качества

В III до нашей эры на острове Родос был построен маяк в виде огромной статуи Гелиоса. Колосс Родосский считался одним из семи чудес света, однако просуществовал всего 66 лет и рухнул во время землетрясения. У Колосса Родосского бронзовая оболочка была смонтирована На железном каркасе. Под действием влажного, насыщенного солями средиземноморского воздуха железный каркас разрушился.

Что является символом Парижа? – Эйфелева башня. Она неизлечима больна, ржавеет и разрушается, и только постоянная химиотерапия помогает бороться с этим смертельным недугом: её красили 18 раз, отчего её масса 9000 т каждый раз увеличивается на 70 т.

Коррозия – рыжая крыса, Грызёт металлический лом. В. Шефнер
Ежегодно в мире «теряется» до ¼ произведённого железа…

А.Н.Несмеянов
Знать – значит победить!

Путешествие по царству «Рыжего дъявола»
ст. Информационная
ст. Экспериментальная
ст. Практическая

разрушение металлов и сплавов под воздействием окружающей среды.
Коррозия

Виды коррозии
По характеру разрушения сплошная (общая): равномерная, неравномерная локальная(местная): точечная, пятнами, язвами, подповерхностная, сквозная и др.

Виды коррозии
сплошная точечная

Язвенная межкристаллитная

Химическая коррозия
- металл разрушается в результате его химического взаимодействия с агрессивной средой (сухими газами, жидкостями-неэлектролитами).
Образование окалины при взаимодействии материалов на основе железа при высокой температуре с кислородом: 8ē 3Fe0 + 2O20 → (Fe+2Fe2+3)O4-2
Видео- фрагмент
Лабораторный опыт – накаливание медной проволоки

Электрохимическая коррозия
- в среде электролита возникает электрический ток при контакте двух металлов (или на поверхности одного металла, имеющего неоднородную структуру); - коррозия напоминает работу гальванического элемента: происходит перенос электронов от одного участка металла к другому (от металла к включению).
Видео- фрагмент

Образующиеся на аноде ионы Fe2+ окисляются до Fe3+ : 4Fe2+ (водн.) + O2 (г.) + (2n + 4)H2O (ж.) = 2Fe2O3 nH2O (тв.) + 8H+ (водн.)
Коррозия металла на влажном воздухе

Железо слабо прокорродировало в воде, в чистой воде коррозия идет медленнее, т. к. вода слабый электролит.
Сравним результаты опытов № 2 и № 5

Добавка к воде NaCl усиливает коррозию Fe. добавка к раствору NaCl – NaOH, как видно из опыта, наоборот ослабила коррозию, ржавчины получилось мало.
Сравним результаты опытов № 1 и № 2

Т. о. скорость коррозии данного металла зависит от состава омывающей среды. Одни составные части омывающий металл среды, в частности Cl- - ионы усиливают коррозию металлов, другие составные части могут ослаблять коррозию. Коррозия Fe ослабевает в присутствии OH- - ионов.

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с цинком, а в другом нет. В пробирке № 2 осадок бурого цвета – это ржавчина, а в пробирке № 4 осадок – белого цвета – это Zn(OH)2 Вывод: В опыте № 4 корродировало не Fe, а Zn , т. к. железо почти не корродирует, если оно соприкасается с цинком.
Сравним результаты опытов № 2 и № 4

Окисляется Zn, как более активный металл
А (-)
отщепляющиеся от его атомов
перемещаются на поверхность Fe и восстанавливают
К (+) Fe

В обоих случаях Fe находится в одном и том же растворе, но в одном случае оно соприкасается с медью, а в другом нет. В обеих пробирках произошла коррозия и появился бурый осадок ржавчины. В пробирке №2 ржавчины получилось меньше, чем в пробирке №3. Вывод: таким образом, коррозия и ржавление железа сильно усиливается, когда оно соприкасается с медью.
Сравним результаты опытов № 2 и № 3

А (-)
К (+) Cu
Реакция растворенного в воде кислорода с железом приводит к образованию бурой ржавчины.

Коррозия металла резко усиливается, если он соприкасается с каким-либо другим, менее активным металлом, т. е. расположенным в электрохимическом ряду напряжений металлов правее его. Но коррозия замедляется, если металл соприкасается с другим металлом, расположенным левее в электрохимическом ряду напряжений металлов, т. е. более активным.

Защита от коррозии
- Изоляция металла от среды - - Изменение среды

Барьерная защита
- механическая изоляция поверхности при использовании поверхностных защитных покрытий: неметаллических (лаки, краски, смазки, эмали, гуммирование (резина), полимеры); металлических (Zn, Sn, Al, Cr, Ni, Ag, Au и др.); химических (пассивирование концентрированной азотной кислотой, оксодирование, науглероживание и др.)


Барьерная защита

Какое поверхностное защитное покрытие использовалось в данном случае? К какой группе поверхностных защитных покрытий оно относится?
Видео- фрагмент
Барьерная защита

Изменение состава металла (сплава)
Протекторная защита - добавление в материал покрытия порошковых металлов, создающих с металлом донорские электронные пары; создание контакта с более активным металлом (для стали - цинк, магний, алюминий).
Под действием агрессивной среды постепенно растворяется порошок добавки, а основной материал коррозии не подвергается.

К основной конструкции прикрепляются заклёпки или пластины из более активного металла, которые и подвергаются разрушению. Такую защиту используют в подводных и подземных сооружениях.

Пропускание электрического тока в направлении, противоположном тому, который возникает в процессе коррозии.
Изменение состава металла (сплава)
Электрозащита

В повседневной жизни человек чаще всего встречается с покрытиями железа цинком и оловом. Листовое железо, покрытое цинком, называют оцинкованным железом, а покрытое оловом – белой жестью. Первое в больших количествах идет на кровли домов, а из второго изготавливают консервные банки.
Изменение состава металла (сплава)
Видео- фрагмент

Введение в металл легирующих добавок: Cr, Ni, Ti, Mn, Mo, V, W и др.
Изменение состава металла (сплава)
Легирование

Изменение среды
Ингибирование
Введение веществ, замедляющих коррозию (ингибиторов): - для кислотной коррозии: азотсодержащие органические основания, альдегиды, белки, серосодержащие органические вещества; - в нейтральной среде: растворимые фосфаты (Na3PO4), дихроматы (K2Cr2O7), сода (Na2CO3), силикаты (Na2SiO3); - при атмосферной коррозии: амины, нитраты и карбонаты аминов, сложные эфиры карбоновых кислот.

В какой пробирке гвоздь не заржавел и почему?
Изменение среды

Изменение среды
Деаэрация - удаление веществ, вызывающих коррозию: нагревание воды; пропускание воды через железные стружки; химическое удаление кислорода (например, 2Na2SO3 + O2 → 2Na2SO4).

Подумай и объясни (домашнее задание)
1. В раствор хлороводородной (соляной) кислоты поместили пластинку из Zn и пластинку из Zn, частично покрытую Cu. В каком случае процесс коррозии происходит интенсивнее? Ответ мотивируйте, составив электронные уравнения соответствующих процессов.
2. Как протекает атмосферная коррозия железа, покрытого слоем никеля, если покрытие нарушено? Составьте электронные уравнения анодного и катодного процессов.

1. На уроке я работал 2. Своей работой на уроке я 3.Урок для меня показался 4. Мое настроение 6. Материал урока мне был активно / пассивно доволен / не доволен коротким / длинным стало лучше / стало хуже понятен / не понятен полезен / бесполезен интересен / скучен
Рефлексия

Код для вставки видеоплеера презентации на свой сайт:



  • Мы должны выяснить, что такое коррозия металлов?
  • Какие виды коррозии бывают?
  • Как протекает этот процесс?
  • Какова роль коррозии в жизни человеческого общества и зачем ее изучать?
  • Какие способы защиты от нее существуют?

  • Понятие коррозии
  • Виды коррозии
  • Химизм процесса коррозии
  • Значение коррозии
  • Способы защиты от коррозии

Коррозия

происходит от латинского «corrosio» ,

что означает разъедать, разрушать.


  • Ржавчина, которая появляется на поверхности стальных и чугунных изделий, - это яркий пример коррозии.
  • Ржавлением называют только коррозию железа и его сплавов. Другие металлы коррозируют, но не ржавеют.
  • Коррозией металлов называют самопроизвольный процесс разрушения металлов и изделий из них под воздействием окружающей среды.

Классификация коррозии

По характеру разрушения:

1. сплошная коррозия, распределяется равномерно по всей поверхности металла или сплава (например, процесс ржавления сплавов железа на воздухе или их взаимодействие с сильными кислотами).

2. локальная (местная) коррозия, охватывающая отдельные участки:

  • пятнами;
  • язвенная;
  • точечная
  • сквозная;

  • химическую коррозию;
  • электрохимическую коррозию.

Химическая коррозия металлов

это разрушение металлов в результате их прямого химического взаимодействия с веществами окружающей среды.


Наиболее распространенным видом химической коррозии является газовая коррозия, проистекающая в сухих газах при полном отсутствии влаги. Газообразное вещество окружающей среды реагирует с металлом на поверхности металлического изделия и образует с ним соединения.

2Fe+3SO 2 +3O 2 → Fe 2 (SO 4 ) 3

2Fe+3Cl 2 →2 FeCL 3


Опыт№ 1. Влияние различных электролитов на скорость коррозии металлов (в зависимости от рН).

  • пробирка №1 -3 мл NaCl, рН=7
  • пробирка №2 – 3 мл NaCl +2 каплиNaOH, рН=12
  • пробирка №3- дист. вода + 2 капли H 2 SO 4 , рН=2
  • пробирка №4- вода дист., рН=7
  • пробирка №5- водопроводная вода, рН определить по универсальной индикаторной бумаге.

Во все пробирки добавьте по 2 капли раствора красной кровяной соли, K 3 и опустите в каждую железный гвоздь.



Состав раствора

Очередность окрашивания

H2O водопровод.


Электрохимическая коррозия - это разрушение металлов, которое сопровождается возникновением

электрического тока.


При электрохимической коррозии

(наиболее частая форма коррозии)

всегда требуется наличие электролита (конденсат, дождевая вода и т. д.),

с которым соприкасаются электроды -

либо различные элементы структуры материала, либо два различных соприкасающихся материала с различающимися окислительно-восстановительными потенциалами.


Образуется коррозионный элемент.

Он представляет собой не что иное, как замкнутую гальваническую ячейку. В ней происходит медленное растворение более активного металла,

второй электрод в паре, как правило, не корродирует.


Опыт№ 2. Химическая и электрохимическая коррозия цинка.

Влияние образование гальванопар на скорость коррозии цинка.

  • В две пробирки налейте по 3 мл 2 н раствора соляной кислоты и внесите по одной грануле цинка. Наблюдайте выделение газов в пробирках. Составьте химическое и электронное уравнения протекающей реакции.
  • В одну из пробирок введите медную проволоку, не касаясь кусочка цинка.

Взаимодействует ли медь с кислотой?

  • Опустите медную проволоку до соприкосновения с гранулой цинка

Что происходит? Наблюдайте выделение водорода с поверхности меди и на скорость реакции по сравнению с первой пробиркой. Что в данном случае является анодом и катодом?

Составьте электронные уравнения электродных процессов.


Рассмотрим электрохимическую коррозию железного образца, имеющего вкрапления олова. Железо более активный металл. При контакте с электролитом часть атомов железа, окисляясь переходит в раствор:

Fe 0 -2е= Fe 2+ (анод) разрушается.

В кислой среде. На олове (катод)восстанавливаются ионы водорода:

2Н + + 2е- = Н 2

Fe 0 +2Н + → Fe 2+ +Н 2

В щелочной и нейтральной среде. На олове (катод) восстанавливается кислород, растворенный в воде

О 2 +2Н 2 О+4е→4ОН - ;

ионы железа Fe 2+ реагируют с гидоксид-анионами

Fe 2+ +2ОН - → Fe(ОН) 2 .

4Fe(ОН) 2 + O 2 + 2H 2 О = 4 Fe(OH) 3

4Fe+ 3O 2 + 6H 2 О = 4 Fe(OH) 3

Fe(OH) 3 и является ржавчиной.