Полиароматические углеводороды (ПАУ). Загрязнение пищевых продуктов полициклическими ароматическими углеводородами Вычисление результатов измерений

Полициклические ароматические углеводороды (ПАУ), обладающие относительной физико-химической инертностью, могут служить индикатором процессов почвообразования и техногенеза. Актуальность исследований ПАУ в почвах определяется повышенной опасностью и масштабностью загрязнения почвенного покрова этими поллютантами.[ ...]

Полициклические ароматические углеводороды (ПАУ), наиболее изученным представителем которых является бензо(а)-пирен, широко распространены во всех сферах окружающей среды.[ ...]

Полициклические ароматические углеводороды (ПАУ), образующиеся при сгорании топлива, представляют собой многокомпонентную смесь, индивидуальный анализ каждого компонента которой без предварительной подготовки образца к анализу затруднен. После предварительного хроматографирования пробы методом колоночной хроматографии в тонком сдое либо методом дифференциальной сублимации возможен анализ индивидуальных ПАУ с помощью УФ-спектроскопии. Метод позволяет определять концентрации различных ПАУ в воздухе до 10-5%, или 0,1 мкг/мл, в растворе.[ ...]

Полициклические ароматические углеводороды (ПАУ) образуются при неполном сгорании органических веществ из ацетиленовых интермедиатов. Источники их поступления в окружающую среду включают гудрон и смолы» сигаретный дым, промышленные и бытовые мусоросжигатели и выхлопные газы автомобилей.[ ...]

Полициклические ароматические углеводороды (ПАУ) обладают сильным канцерогенным действием. Высокие концентрации этих веществ встречаются в растительных маслах, а также в обжаренных продуктах. При копчении ПАУ в продуктах увеличиваются значительно.[ ...]

Полициклические ароматические углеводороды (ПАУ) представляют собой органические соединения бензольного ряда. Актуальность исследований ПАУ в почвах определяется повышенной опасностью и масштабностью загрязнения почвенного покрова этими соединениями. Почвы являются главным депонирующим ПАУ компонентом ландшафта. От свойств почв зависят интенсивность накопления, миграционные характеристики, возможность консервации и последующей мобилизации данной группы органических соединений в окружающей среде (Геннадиев и др., 1996; Пеннин и др., 1991; Пиковский, 1993).[ ...]

Ароматические соединения поступают в биосферу различными путями и их источниками служат промышленные предприятия, транспорт, бытовые стоки. Особое внимание, уделяемое ароматическим соединениям, в значительной степени вызвано их канцерогенными, свойствами. Собственно ароматические соединения (бензол, его гомологи и производные, фенолы), а также полициклические ароматические углеводороды (ПАУ) поступают в атмосферу в результате выбросов и отходов коксохимических заводов, некоторых химических заводов, выхлопов двигателей внутреннего сгорания, продуктов сжигания различных видов топлива. В стоках коксохимических заводов содержится и большое количество фенольных соединений. Грунтовые воды нередко загрязняются ПАУ за счет различных осадков сточных вод. Фенольными соединениями вообще представлена большая группа ксенобиотиков антропогенного происхождения.[ ...]

Полициклические ароматические углеводороды (ПАУ) образуются при неполном сгорании органических веществ. Будучи широко распространенными в окружающей среде, ПАУ являются приоритетными загрязнителями как в списке ЕС, так и в списке ЕРА (см. выше). Некоторые ПАУ обладают канцерогенными свойствами, поэтому требуются чувствительные и селективные методы для их определения. Считается, что в питьевой, поверхностной и сточных водах необходимо определить главным образом 16 соединений, входящих в эту группу (см. рис. 11.6).[ ...]

Полициклические ароматические углеводороды (ПАУ) являются приоритетными загрязнителями в списках ЕС, ЕРА и в России. Многие из них обладают выраженным канцерогенным действием, поэтому необходим постоянный контроль (мониторинг) за содержанием ПАУ в воде и почве. Считается, что в питьевой, поверхностных и сточных водах необходимо определять главным образом 16 соединений (список ЕС, см. рис. Чаще всего для этой цели используют ВЭЖХ с УФ-детектором на диодной матрице (см. главу II) или с флуоресцентным детектором, однако метод хрома-то-масс-спектрометрии более надежен, т.к. с его помощью можно однозначно идентифицировать ПАУ, особенно после соответствующей очистки воды от других ЛОС.[ ...]

К ароматическим УВ относятся как собственно ароматические структуры - 6-членные кольца из радикалов -СН-, так и “гибридные” структуры, состоящие из ароматических и нафтеновых колец. Основная масса ароматических структур составляют моноядерные УВ - гомологи бензола. Полициклические ароматические углеводороды (ПАУ) с двумя и более ароматическими кольцами составляют в нефти 1- 4 %. Среди голоядерных ПАУ большое внимание обычно уделяется 3,4-бензо-(а)пирену как наиболее распространенному представителю канцерогенных веществ.[ ...]

Бенз(а)пирен (БП) - полициклический ароматический углеводород (ПАУ), наиболее стойкий и сильный канцероген среди ПАУ. Является индикатором наличия канцерогенных ПАУ в окружающей среде. Поступление БП в атмосферу происходит в основном за счет сжигания угля, древесины, производства кокса, пожаров лесных и степных - более 5000 т/год.[ ...]

Среди НУ особое место занимают полициклические ароматические углеводороды (ПАУ) как природного, так и антропогенного происхождения, которые обладают значительной устойчивостью, а также токсическими и канцерогенными свойствами. С 1991 г. выявлена устойчивая тенденция к снижению уровней загрязнения НУ вод северной части моря. Баренцеву морю свойствен низкий (фоновый) уровень содержания ПАУ и минимальное загрязнение ЗВ антропогенного происхождения.[ ...]

Определение полиароматических углеводородов. Жидкостная хроматография (ЖХ) находит широкое применение для анализа полициклических ароматических углеводородов (ПАУ). Впервые ЖХ бьгла использована для определения ПАУ в 1934 г. Винтерштейном и Шином при исследовании канцерогенных веществ, содержащихся в угольной смоле. Затем на протяжении многих лет жидкостную хроматографию использовали для выделения ПАУ из каменноугольной смолы, аэрозолей автомобильных выхлопных газов. Значительно позднее жидкостная хроматография была применена для разделения азотсодержащих гетероциклических углеводородов, некоторых первичных ароматических аминов и гетероциклических иминов.[ ...]

Следующая группа загрязнителей-полициклические ароматические углеводороды (ПАУ) - могут быть как первичными, так и вторичными загрязнителями атмосферы и обычно адсорбируются на твердых частицах. Многие из ПАУ отличаются выраженным канцерогенным, мутагенным и тератогенным действием и представляют серьезную угрозу для человека. Основным источником эмиссии ПАУ являются ТЭС, работающие на нефти или каменном угле, а также предприятия нефтехимической промышленности и автотранспорта. Из нескольких миллионнов известных в настоящее время химических соединений лишь около €000 были проверены на канцерогенную активность. В настоящее время установлено, что 1500 химических соединений, являющихся потенциальными загрязнителями атмосферы, обладают выраженными канцерогенными свойствами (ПАУ, нитрозамины, галогенуглеводороды и др.). Содержание ПАУ и других канцерогенных веществ, попадающих в атмосферу с выбросами промышленных предприятий, составляет в крупных индустриальных центрах около 80% от общего загрязнения окружающей среды.[ ...]

При мониторинге почв, загрязненных углеводородами, особое внимание уделяется определению полициклических ароматических углеводородов (ПАУ) люминесцентными и газохроматографическими методами.[ ...]

К канцерогенным веществам табака относятся и полициклические ароматические углеводороды (ПАУ), нитрозосоединения и другие - более 30 канцерогенных веществ. Их содержание в табаке колеблется в больших пределах: от 91 нг на 1 сигарету (н - нона, 10 9 - г). Концентрация этого токсиканта в сигаретах не регулируется ни в одной стране мира. Впервые с 1994 г. в России вышло постановление, регламентирующее предельно допустимые уровни (ПДУ) смол в сигаретах.[ ...]

Особое значение имеют выбросы бензола, толуола, полициклических ароматических углеводородов (ПАУ) и в первую очередь бенз(а)пирена(С20Н 2)- Эта группа высокотоксичных веществ образуется в результате пиролиза (разложения) легких и средних фракций топлива при температуре 600...700 К. Такие условия возникают во время рабочего хода в цилиндре вблизи его холодных поверхностей при наличии там большого недостатка кислорода. Количество ПАУ в ОГ тем больше, чем выше концентрации в топливе бензола. ПАУ относятся к так называемым канцерогенным веществам, они не выводятся из организма человека, а со временем накапливаются в нем, способствуя образованию злокачественных опухолей.[ ...]

Среди химических канцерогенов в выбросах ТЭС ведущее место занимают полициклические ароматические углеводороды (ПАУ) , образующиеся при сжигании топлива и его термической переработке (табл. 1.4).[ ...]

Микроорганизмы, способные утилизировать алифатические, ди- и трициклические ароматические углеводороды, достаточно легко выделяются в чистую культуру из почв, загрязненных нефтепродуктами. Деградация высокомолекулярных полициклических ароматических углеводородов (ПАУ) достоверно показана только для ПАУ с четырьмя кольцами.[ ...]

Вопрос о возможности присутствия, качественного и количественного определения полициклических ароматических углеводородов (ПАУ) - загрязнителей атмосферного воздуха - уже давно стал объектом внимания ученых онкологов и гигиенистов, а также органов санитарного надзора. Объясняется это тем, что среди соединений этого класса имеется много канцерогенных веществ, т. е. веществ, способных вызывать злокачественные опухоли . Канцерогенные свойства этих соединений доказаны в первую очередь многочисленными опытами на животных. Кроме того, на основании ряда фактов сделан вывод о том, что канцерогенные ПАУ способны вызывать злокачественные опухоли и у людей.[ ...]

Со сбросом нефтепродуктов и других загрязнений связывают присутствие в водоемах полициклических ароматических углеводородов (ПАУ), в том числе бенз(а)пирена (БП). Эти углеводороды обнаруживались в водоемах в концентрации 0,025- 0,100 мкг/л, в значительно загрязненных водоемах их концентрация превышала 0,100 мкг/л. Наблюдалось поступление этих веществ в морской планктон. Содержание БП в планктоне достигало 400 мг/кг сухой пробы.[ ...]

Изучение степени загрязнения окружающей и производственной среды канцерогенными полициклическими ароматическими углеводородами (ПАУ) на объектах газовой промышленности является актуальной проблемой для предотвращения дальнейшего загрязнения и улучшения экологической ситуации.[ ...]

На некоторых участках малых рек в зоне Череповца выявлены в количестве от 3 до 43 ПДК полициклические ароматические углеводороды (ПАУ), полихлорированные бифенилы (ПХБ) в концентрации 0,2-0,33 мкг/л, что на три порядка превышает уровни, рекомендованные ВОЗ для поверхностных водоемов.[ ...]

По токсичности и вредному воздействию на экосистемы на первом месте из этого списка находятся хлорорганические пестициды (ХОП), полициклические ароматические углеводороды (ПАУ) и полихлорированные бифенилы (ПХБ).[ ...]

Количество ПАУ, поступающих в атмосферу с дымовыми газами, в значительной степени зависит от качества и вида сжигаемого топлива: угольные брикеты дают выброс ПАУ в 4-8 раз больший, чем уголь; выброс. ПАУ гораздо меньше при сжигании жидкого топлива и минимален при сжигании газа. Он существенно зависит от режима сжигания: при химическом недожоге количество ПАУ в дымовых газах может возрастать в 10-50 раз за счет содержания их в саже / 14/.[ ...]

При сгорании нефтепродуктов, каменного угля, сланцев на коксохимических производствах, при нефтепереработке, как уже упоминалось, образуются полициклические ароматические углеводороды (ПАУ). Предельно допустимая концентрация ПАУ составляет 1 мкг/100 м3. В нефти его содержится от 250 до 850 мг/кг.[ ...]

Болезнью века стал рак. Это также в значительной степени связано с тем, что атмосферный воздух содержит канцерогенные, мутагенные и тератогенные вещества. Большую опасность представляют полициклические ароматические углеводороды (ПАУ). Отмечается прямая связь между загрязнением атмосферного воздуха канцерогенными углеводородами и степенью развития промышленности, транспорта, величиной городских агломераций. В сельской местности, где воздух чище, заболеваемость раком отмечается реже, чем в городах, особенно крупных. Вероятность заболевания раком легких для горожанина-курилыцика в 10 раз выше, чем для некурящего сельского жителя, а загрязнители воздуха в городе, отравляя кровь оксидами углерода, наносят некурящему человеку такой же вред, как выкуривание курильщиком пачки сигарет в день.[ ...]

Были измерены анодные вольтам-перометрические характеристики 11 ПАУ, в том числе и бенз(а)пирена, но в конечном итоге электрохимические методики не смогли оказать конкуренции определению ПАУ методом ВЭЖХ (см. главу II) или спектрально-люминесцентным методом (см. главу III).[ ...]

Не менее опасны многие сотни или тысячи органических ксенобиотиков, синтезированных или полученных из углеводородного сырья. Это прежде всего хлороорганические пестициды, содержащие диоксин дефолианты, полициклические ароматические углеводороды (ПАУ), нитрозосоединения, синтетические поверхностно-активные вещества (СПАВ) и др. Они обладают различной стойкостью, некоторые из них сравнительно легко инактивируются отдельными видами деструкторов, но до этого они успевают нанести вред своим носителям, вызывая у высших животных и человека нарушения иммунитета, возникновение злокачественных опухолей, уродства плода при беременности, генетические нарушения.[ ...]

В настоящее время в ряде стран (например, в Швеции) введен запрет на любые формы промышленной переработки К. КАНЦЕРОГЕННЫЕ ВЕЩЕСТВА (К.в.) - химические соединения, вызывающие заболевания раком. К их числу относятся полициклические ароматические углеводороды (ПАУ, в первую очередь бензо-пирен), мышьяк, бензол, асбест и др. Сильнейшими К.в. являются радиоактивные изотопы элементов, вызывающие радиоактивное загрязнение.[ ...]

В составе нефти они играют важную роль, определяя во многом ее физические свойства и химическую активность. Смолы - вязкие мазеподобные вещества, асфальтены - твердые вещества, не растворимые в низкомолекулярных растворителях. Содержание ароматических углеводородов в нефти изменяется от 5 до 55 %, чаще всего 20-40%. Основную массу ароматических структур составляют моноядерные углеводороды - гомологи бензола. Полициклические ароматические углеводороды (ПАУ), т.е. углеводороды, состоящие из двух и более ароматических колец, содержатся в нефти в количестве от 1 до 4 % .[ ...]

Для выявления разных загрязняющих веществ используются разные виды Б.и.: для общего загрязнения - лишайники и мхи, для загрязнения тяжелыми металлами - слива и фасоль, диоксидом серы - ель и люцерна, аммиаком- подсолнечник, сероводородом - шпинат и горох, полициклическими ароматическими углеводородами (ПАУ) - недотрога и др. Живые приборы» устанавливают в наиболее загрязненных частях города.[ ...]

В дополнение к материалу, посвященному первичным7 мероприятиям по уменьшению выбросов NOx из топок котлов, следует отметить, что при использовании малозатратных методов подавления NOx при сжигании природного газа в случае неполного сгорания топлива могут образовываться угарный газ СО, углеводороды СН4, С2Нб, а также канцерогенные вещества. Продукты неполного сгорания топлива весьма вредны. Проблема изучения канцерогенных веществ, образующихся при неполном сгорании топлива, в последнее время привлекла серьезное внимание специалистов. По своей распространенности и интенсивности воздействия из многих химических веществ этого типа наибольшее значение имеют полициклические ароматические углеводороды (ПАУ) и наиболее активный из них бенз(а)пирен С20Н12. Максимальное количество бенз(а)пи-рена образуется в топках при температуре 700-800 °С в условиях нехватки воздуха для сгорания топлива.[ ...]

Взвешенная техногенная пыль, оседающая на почвы, горные породы и в водоемы, примерно на 90% состоит из тонкодисперсной фракции. Она имеет сложный состав, зависящий от источника ее поступления. На частицах пыли сорбируются и оседают различные вредные вещества, например такие, как тяжелые металлы и полициклические ароматические углеводороды (ПАУ).[ ...]

Еще более надежными являются результаты идентификации токсичных веществ, полученные при использовании комбинации методов - ВЭЖХ и газовой хроматографии, тонкослойной хроматографии (ТСХ) и газовой, ТСХ и ВЭЖХ и др. При определении в воздухе, воде или почве обладающих выраженной канцерогенной активностью полициклических ароматических углеводородов (ПАУ) можно получить почти однозначные результаты после отделения сопутствующих (и мешающих определению) примесей - углеводороды других классов и их производные - методом ВЭЖХ или ТСХ с последующих анализом выделенных фракций методом газовой хроматографии .[ ...]

Высокое содержание сажи в дыму указывает на неполное сгорание топлива (яркий пример - сгорание древесины на костре в лесу). Особенно большое количество сажи выбрасывает при неполном сгорании каменного угля ТЭЦ, при работе дизельных двигателей и т.д. Кроме токсичности самих частиц сажи, на их поверхности адсорбируются различные канцерогенные вещества, например, полициклические ароматические углеводороды (ПАУ).[ ...]

Техногенные органические ксенобиотики. В эту очень большую группу различных опасных веществ входят агенты, которые при локальном влиянии относительно высоких концентраций, связанном с авариями или военными действиями, могут вызывать острые отравления и гибель людей (диоксины, полихлорбифени-лы, некоторые фосфороорганические соединения). Рассеянное присутствие их в среде в микроколичествах, как и других органических ксенобиотиков, вызывает при хроническом действии целый спектр экопатологий. Кроме указанных супертоксинов в эту группу входят пестициды, полициклические ароматические углеводороды (ПАУ), хлорированные фенолы и ПАУ, ароматические амины, некоторые мономеры пластмасс, полимерные материалы и другие синтетические органические вещества.[ ...]

Существуют различные оценки опасности отходов, загрязняющих землю. По разным критериям опасности только химического и бактериологического загрязнения почвы и грунтов ежегодно в мире образуется от 1 до 1,5 млрд т вредных производственных и 400-450 млн т вредных твердых бытовых отходов. Наиболее опасны те токсичные терраполлютанты, которые и геохимически, и биохимически достаточно подвижны и могут попасть в питьевую воду или в растения, служащие пищей для человека и сельскохозяйственных животных. Это в первую очередь соединения тяжелых металлов, некоторые производные нефтепродуктов - полициклические ароматические углеводороды (ПАУ) и соединения типа диоксинов, а также разнообразные синтетические яды - биоциды. Кроме них, в связи с определенной вероятностью технических аварий, террористических актов и вооруженных конфликтов, чрезвычайно высокую опасность представляют боевые отравляющие вещества (ОВ) и радионуклиды.[ ...]

Источниками возбуждения могут быть свет (фотолюминесценция), химические реакции (хемилюминесценция), рентгеновские лучи (рентгенолюминесценция) и др. (табл. В экологической аналитической химии чаще всего используют анализ, основанный на фотолюминесценции исследуемого вещества или хемилюминесценции. В первом случае используют фотолюминесценцию, возбуждаемую УФ-излучением, источником которого служат ртутно-кварцевые или ксеноновые лампы и лазеры. Регистрируют люминесценцию фотоэлектрически (с помощью спектрофотометра - флуориметра). Качественный анализ (по спектру люминесценции) особенно часто используют для обнаружения полициклических ароматических углеводородов (ПАУ). Количественный анализ основан на зависимости интенсивности люминесценции от количества лю-минесцирующего вещества (см. закон Бугера-Ламберта-Вера, раздел 3.1).

Полициклические ароматические углеводороды – нежелательный побочный продукт сжигания ископаемого топлива, в первую очередь угля и нефтепродуктов. Уголь считается смесью огромного количества поликонденсированных ароматических бензольных ядер с минимальным содержанием водорода. При сжигании этих веществ в печах, электростанциях, двигателях внутреннего сгорания эти соединения разлагаются. При низких температурах сгорания и недостаточном поступлении атмосферного кислорода образуется очень реактивный ацетилен, равно как и различные алифатические фрагменты углеводородов. Ацетилен полимеризуется в бутадиен, который в дальнейшем образует ядро ароматического углеводорода. При добавлении его к существующим ароматическим ядрам возникает ПАУ, например пирен, из которого путем добавления еще одной молекулы бутадиена выделяется наиболее известный канцероген – бензо[а]пирен (БаП). При сжигании при высокой температуре и обильном поступлении атмосферного кислорода образуется мало ПАУ, потому что практически весь углерод сгорает, превращаясь в оксид углерода.

При неполном сгорании возникают частички углерода – сажа. Можно предположить, что образующиеся ПАУ, адсорбированные на поверхности частичек сажи и дыма, вместе с ними попадают в окружающую нас среду. Сажа, твердые частички дыма и выхлопных газов содержатся в дорожной пыли, смоге больших городов, пыльном воздухе коксовых заводов. Вместе с пылью они попадают на одежду, кожу, в дыхательные пути. Сегодня известно уже несколько сот различных полициклических ароматических веществ: несколько десятков из них – канцерогены. Однако их действие неодинаково и зависит от строения соответствующего вещества.

Где встречаются ПАУ

Кроме сажи, дыма и выхлопных газов ПАУ (и среди них, естественно, канцерогенные) встречаются практически всюду, где происходит неполное сгорание: в сигаретном дыме, копченых продуктах, молотом кофе, пережаренном мясе, асфальте и дегте, пригоревшей корочке хлеба, расплавленном сахаре, смазочных минеральных маслах, парафиновом масле, которое иногда использовали как слабительное. Несмотря на это, главным источником опасности является сжигание угля и нефтепродуктов, а также каменноугольный деготь, нефтяной асфальт и другие «тяжелые» продукты распада ископаемого топлива. Легкие – главный путь поступления этих веществ в организм. На их внутренней влажной поверхности оседают твердые частички пыли и дыма, которые являются в известном смысле «носителями» канцерогенных ПАУ. Установлено, что больше всего ароматических углеводородов содержат именно мельчайшие твердые частички (в среднем 0,5-5 мкм), которые легче всего попадают в легкие и от которых труднее всего избавиться. По-видимому, частички дыма таких размеров представляют наибольшую опасность для легких и гортани человека.

В качестве примера образования канцерогенных ПАУ можно привести процессы, протекающие в двигателе внутреннего сгорания автомобиля – одном из «выдающихся продуцентов» этих веществ. Содержание БаП в сырой нефти составляет около 1 части на миллион (ч. н. м.) (т. е. миллион килограммов сырой нефти содержит около 1 кг БаП). При сжигании нефти одна часть ПАУ распадается и сгорает, другая при этом образуется. Большая часть добываемой нефти энергетически и экономически используется самым невыгодным способом, т. е. сжигается. И лишь немного ее служит основным сырьем для химической промышленности. Подсчитано, что в США в 1974 г. было использовано такое количество сырой нефти, которое соответствует 840 т БАП! Очевидно, что после сжигания нефти и ее продуктов это количество попадает в окружающую человека среду.

Различные виды бензина содержат 0,2-0,5 мкг БаП на 1 г топлива. Однако в атмосферу при сгорании попадают не только ПАУ, содержащиеся в топливе, но и возникающие в процессе сгорания. Полициклические ароматические углеводороды образуются главным образом тогда, когда сжигается «богатая» смесь. При соотношении воздуха и топлива 10:1 выделяется в 30 раз больше БаП, чем при соотношении 14:1.

При сжигании тяжелых топлив для дизельных двигателей окружающая среда загрязняется намного большим количеством ПАУ, чем при использовании легких бензинов. Так, при сжигании 1 галлона бензина окружающая среда «обогащается» примерно на 170 мкг БаП, а такое же количество дизельного топлива выделяет его уже 690 мкг.

Моторные масла, относящиеся к «тяжелым» нефтепродуктам, также характеризуются высоким содержанием ПАУ. Источником их являются главным образом двухтактные двигатели мотоциклов и некоторых марок автомобилей. Дело в том, что в двигателях вместе с бензином сжигают и масло (обычно в соотношении 1:30). Если четырехтактный двигатель при сжигании одного галлона топлива выбрасывает в окружающую среду около 170 мкг БаП, то такое количество топлива с содержанием масла в двухтактном двигателе выбрасывает до 11000 мкг!

Нежелательные последствия развития автомобилизма

Образование канцерогенных ПАУ в значительной мере зависит от технического состояния двигателя автомобиля. Приведенные данные касаются исправных, практически новых двигателей. Автомобильный двигатель, испытанный после пробега 50 000 миль, выбрасывал в 5 раз больше БаП, чем двигатель автомобиля, пробежавшего только 5000 миль. Это объясняется тем, что в более изношенном двигателе уплотнение цилиндров намного хуже, чем в новом, и поэтому в нем наряду с бензином сжигается и смазочное масло. Кроме того, содержание БаП во вновь залитом моторном масле (0,03 мкг на 1 г масла) увеличивается в 200 раз (до 0,6 мкг на 1 г) после пробега 1400 миль. Использованное моторное масло очень опасно еще тем, что оно содержит нитраты (нитро-производные). Дело в том, что при сгорании возникают также оксиды азота, которые химически соединяются с уже присутствующими ПАУ и образуют их нитропроизводные. Эти вещества лучше растворяются в воде, чем исходные полициклические углеводороды, и поэтому могут легче попасть в организм человека, с одной стороны, и как прямые канцерогены вызвать рак без предварительной метаболической активации – с другой.

К кругу этих проблем относятся также нежелательные последствия развития автомобилизма. Автомобильные дороги покрыты в основном асфальтом – одним из самых тяжелых нефтепродуктов.

Содержание ПАУ в нефтяном асфальте наиболее высокое (до 0,2 вес.% БаП). Это вещество содержится в парах расплавленного асфальта, образующихся при покрытии и ремонте дорог. Эти пары содержат до 0,4 вес.% БаП. И хотя ПАУ очень плохо растворяются в воде, их все же вымывает дождевой водой с поверхности асфальтового покрытия дорог и вместе с ней они попадают в верхние слон почвы, где накапливаются.

Это только один пример загрязнения окружающей среды. Не будем останавливаться на других источниках загрязнения канцерогенными ПАУ – печном дыме в отопительный сезон, саже электростанций, выбросах заводских труб, загрязнении моря при авариях танкеров и т. д.

Полициклические ароматические углеводороды (ПАУ) относятся к наиболее сильным канцерогенным веществам. Достаточно 0,1 мг таких ПАУ, как бенз(а)пирен, чтобы вызвать опухоли у различных видов животных.

В настоящее время известно более 200 представителей данной группы, соединений, образующихся, как правило, при термическом воздействии на пищевые продукты. К наиболее активным канцерогенам относят: бенз(а)пирен, дибенз(а,h)антрацен, дибенз(а,i)пирен; к умеренно активным - бенз(h)флуорантен; к менее активным - бенз(е)пирен, бенз(а)антрацен, дибенз(а,с)антрацен, хризен и др. Наиболее известным представителем ПАУ является бенз(а)пирен.

Канцерогенная активность реальных сочетаний ПАУ на 70-80 % обусловлена наличием бенз(а)пирена. Поэтому по присутствию бенз(а)пирена в пищевых продуктах можно судить об уровне их загрязнения ПАУ и степени онкогенной опасности для человека.

Ежегодно в биосферу поступают тысячи тонн бенз(а)пирена природного происхождения, еще больше - за счет техногенных источников (промышленные предприятия, транспорт). ПАУ образуются в природе и попадают в объекты пищевых цепей прежде всего как результат сжигания при низких температурах углеводородного сырья, древесины, полимеров, пищи и др. Развитие неконтролируемых процессов неполного окисления приводит к тому, что в копченых продуктах (мясо, рыба) содержание бенз(а)пирена может превышать безопасные нормы. В частности, ПАУ образуются при пиролизе жира, капающего на древесный уголь и попадающего в мясо с дымом при копчении.

Условия термической обработки пищевых продуктов оказывают большое влияние на накопление бенз(а)пирена. В подгоревшей корке хлеба Обнаружено, до 0,5 мкг/кг бенз(а)пирена, в подгоревшем бисквите - до 0,75 мкг/кг, а в продуктах домашнего копчения - свыше 50 мкг/кг.

В свежих говядине и свинине бенз(а)пирен отсутствует, содержание

бенз(а)пирена в вареной колбасе составляет 0,2-0,5 мкг/кг, колбасе сырокопченой - 0-2, колбасе полукопченой - 0-7, рыбе - 0-2, рыбе копченой - 0,1-12,0, масле подсолнечном - 1-30, масле подсолнечном рафинированном - отсутствует, кокосовом масле - 15--45, овощах - 1-25, сухофруктах - 1-35 мкг/кг. ПДК бенз(а)пирена в воздухе составляет 0,001 мкг/м 3 , в воде - 0,005 мкг/л, в почве - 0,2 мг/кг.

Немало важную роль в загрязнении пищевых продуктов ПАУ могут играть полимерные упаковочные материалы. Некоторые компоненты пищевых продуктов являются элюентами, т. е. экстрагируют ПАУ из полимерной упаковки. Например, эффективным элюентом ПАУ является жир молока, который экстрагирует до 95 % бенз(а)пирена из парафинобумажных пакетов и стаканчиков.

Все это свидетельствует о необходимости соблюдения технологических регламентов и санитарно-гигиенических требований при производстве пищевых продуктов.


Наиболее эффективными путями снижения содержания ПАУ в пищевых продуктах являются совершенствование способов технологической и кулинарной обработки продуктов, удаление ПАУ путем рафинирования растительных масел, применение для производства копченых мясных продуктов коптильных жидкостей, стандартизованных по содержанию ПАУ.

Методы определения бенз(а)пирена в пищевых продуктах

Как отмечалось выше, бенз(а)пирен является индикатором присутствия в продуктах канцерогенных ПАУ. Обладая липофильными свойствами, бенз(а)пирен накапливается в основном в жировой фракции пищевых продуктов для того чтобы извлечь бенз(а)пирен из образца, необходимо провести щелочное омыление липидов анализируемого продукта, воздействуя на образец спиртовым раствором щелочи. При этом происходит щелочной гидролиз жиров с образованием глицерина и солей жирных кислот, а также остается неомыляемая фракция липидов, содержащая бенз(а)пирен.

Из неомыляемой фракции липидов бенз(а)пирен выделяют экстракцией гексаном. Полученный экстракт подвергают очистке от мешающих примесей методами колоночной хроматографии или твердофазной экстракции. Идентификацию и количественное определение бенз(а)пирена проводят методами спектрофлуориметрии, тонкослойной или высокоэффективной жидкостной хроматографии.

Загрязнение почвы одним из ПАУ - бенз(а)пиреном является индикатором общего загрязнения окружающей среды вследствие возрастающего загрязнения атмосферного воздуха.

Накапливаемый в почве бенз(а)пирен может переходить из корней в растения, то есть растения загрязняются не только с осаждающейся из воздуха пылью, но и через почву. Концентрация его почве разных стран изменяется от 0,5 до 1 000 000 мкг/кг.

В воде в зависимости от загрязнения найдены различные концентрации бенз(а)пирена: в грунтовой – 1-10 мкг/л, в речной и озерной 10-25 мкг/л, в поверхностной – 25-100 мкг/л.

ПАУ чрезвычайно устойчивы в любой среде, и при систематическом их образовании существует опасность их накопления в природных объектах. В настоящее время 200 представителей канцерогенных углеводородов, включая их производные, относятся к самой большой группе известных канцерогенов, насчитывающей более 1000 соединений.

По канцерогенности полициклические ароматические углеводороды делят на основные группы:
1 - наиболее активные канцерогены - бенз(а)пирен (бп), дибенз(а, h)антрацен, дибенз(а, i)пирен;
2 - умеренно активные канцерогены - бенз(h)флуорантен;
3 - менее активные канцерогены - бенз(е)пирен, бенз(а)антроцен, дибенз(а, с)антрацен, хризен и др.

Бенз(а)пирен попадает в организм человека не только из внешней среды, но и с такими пищевыми продуктами, в которых существование канцерогенных углеводородов до настоящего времени не предполагалось. Он обнаружен в хлебе, овощах, фруктах, растительных маслах, а также обжаренном кофе, копченостях и мясных продуктах, поджаренных на древесном угле.

Условия термической обработки пищевых продуктов оказывают большое влияние на накопление БП. В подгоревшей корке хлеба обнаружено БП до 0,5 мкг/кг, подгоревшем бисквите – до 0,75 мкг/кг. Продукты домашнего копчения могут содержать БП более 50 мкг/кг. Образование канцерогенных углеводородов можно снизить правильно проведенной термической обработкой.

Сильное загрязнение продуктов полициклическими ароматическими углеводородами наблюдается при обработке их дымом.

В плодах и овощах бенз(а)пирена содержится в среднем 0,2-150 мкг/кг сухого вещества. Мойка удаляет вместе с пылью до 20 % полициклических ароматических углеводородов. Незначительная часть углеводородов может быть обнаружена и внутри плодов. Яблоки из непромышленных районов содержат 0,2-0,5 мкг/кг бенз(а)пирена, вблизи дорог с интенсивным движением - до 10 мкг/кг.

Полимерные упаковочные материалы могут играть немаловажную роль в загрязнении пищевых продуктов ПАУ, особенно при наличии в продуктах элюэнтов (веществ, экстрагируемых в растворителе). Так, например, эффективным элюэнтом ПАУ является жир молока, который экстрагирует до 95 % БП из парафино-бумажных пакетов или стаканчиков.

С пищей взрослый человек получает в год 0,006 мг БП. В интенсивно загрязненных ПАУ районах эта доза возрастает в 3 и более раз. Предполагают, что для человека с массой тела 60 кг ДСД БП должна быть не более 0,24 мкг. ПДК БП в атмосферном воздухе - 0,1 мкг/100 м 3 , в воде водоемов - 0,005 мг/л, в почве - 0,2 мг/кг.

При попадании в организм полициклические углеводороды под действием ферментов образуют эпоксисоединение, реагирующее с гуанином, что препятствует синтезу ДНК, вызывает нарушение или приводит к возникновению мутаций, способствующих развитию раковых заболеваний, в том числе таких видов рака, как карциномы и саркомы.

Учитывая, что почти половина всех злокачественных опухолей у людей локализуется в желудочно-кишечном тракте, отрицательную роль загрязненной канцерогенами пищевой продукции трудно переоценить. Для максимального снижения содержания канцерогенов в пище основные усилия должны быть направлены на создание таких технологических приемов хранения и переработки пищевого сырья, которые бы предупреждали образование канцерогенов в продуктах питания или исключали загрязнение ими.

Полициклические ароматические углеводороды - органические вещества, основные элементы которых - углерод и водород - образуют бензольные кольца, незамещенные или замещенные, способные полимеризоваться.

Для этих соединений характерна низкая растворимость в воде, высокая способность к сорбции и устойчивость в компонентах среды, особенно почвах.

К группе ПАУ относятся сотни химических веществ. В настоящее время за рубежом рекомендуется контролировать в объектах окружающей среды 16 веществ из группы ПАУ: нафталин, аценафтилен, аценафтен, флуорен, антрацен, фенантрен, флуорантен, бенз(а)антрацен, хризен, пирен, бенз(а)пирен, дибенз(ah)антрацен, бенз(g, h,i)перилен, бенз(а)флуорантен, бенз(k)флуорантен и индено(1,2,3-cd)пирен, а в России только одно соединение этого класса - бенз(а)пирен.

Поступают ПАУ в окружающую среду с отходами транспорта, энергетики, в меньшей степени промышленности. Эти загрязняющие вещества образуются при сгорании бензина, нефтепродуктов, угля, газа, битумов, древесины (практически при сгорании всех видов горючих материалов). Содержатся они в сажевых выбросах ТЭЦ и любых тепловых агрегатов. Среди промышленных предприятий на первом месте по выбросам бенз(а)пирена находятся алюминиевые заводы и производства технического углерода.

Транспорт - главный источник загрязнения ПАУ. ПАУ содержатся в газовых выбросах автотранспорта, авиации, железнодорожного транспорта. В выхлопных газах двигателей внутреннего сгорания преобладают незамещенные ПАУ, а также нитроПАУ.

ПАУ входят в состав отходов коксохимических, нефтеперегонных заводов и нефтепромыслов. Образуются они при получении смол высокотемпературной переработкой угля, сланцев, торфа, при крекинге нефти.

Антропогенные источники выбрасывают более 5000 т 3,4 бенз(а) пирена. Бенз(а)пирен в 70-80 % случаев занимает первое место среди веществ, с которыми связано высокое загрязнение городов. В атмосферу ПАУ поступают в форме частиц сажи (продукта неполного сгорания топлива), в адсорбированном состоянии на поверхности твердых частиц (оксидов, солей металлов и др.). Газообразные ПАУ в атмосфере сорбируются пылью.

Для характеристики загрязнения окружающей среды ПАУ используют данные о загрязнении снега. ПАУ концентрируются обычно в снеговой пыли, а не в растворимой фракции. Установлено накопление ПАУ в снеговом покрове вокруг ТЭЦ, металлургических комбинатов.

Уровни суммарного содержания ПАУ в загрязненных почвах колеблются от единиц до сотен и даже тысяч (2000-4000) мкг/кг почвы. Российский норматив (ПДК) бенз(а)пирена для почв составляет 20 мкг/кг, поверхностных вод - 5 нг/л, воздуха населенных мест (СС) - 1 нг/м 3 .

Одним из ключевых процессов, определяющих судьбу ПАУ в окружающей среде, является сорбция. Связывание загрязнителей минеральными, органо-минеральными коллоидами и растворенными природными органическими соединениями создает возможность для водной миграции ПАУ в составе твердых фаз, а также эмульсий.

Основным же накопителем ПАУ, как и других загрязняющих веществ в экосистеме, является почва. Гидрофобные соединения преимущественно связываются органическим веществом почвы. Наличие ОН-групп в ПАУ позволяет образовывать дополнительные связи (водородные) с органической и минеральной почвенной матрицей.

Аэротехногенным привносом в основном обусловлен пул легких ПАУ в почве. Тяжелые ПАУ могут формироваться в результате трансформации органического вещества в процессе педогенеза, причем бенз(а)пирен может в определенных условиях (при оптимальном сочетании влажности, температуры, аэрации и т. д.) усиливать процесс минерализации почвенного органического вещества и соответственно педогенного образования тяжелых ПАУ (Яковлева и др., 2008).

Поглощение органических загрязняющих веществ, в том числе и ПАУ, корнями растений из почвы, согласно концептуальной модели S. L. Simonich, R. A. Hites (1995), представляется как функция растворимости вещества в воде, его содержания в почве и вида растения. Процесс накопления стойких органических соединений растениями имеет общие закономерности; коэффициенты накопления (отношение содержания вещества в корнях к его содержанию в почве) являются нелинейной функцией содержания их в почвах, что может объясняться в случае невысоких концентраций сорбцией загрязнителя почвой, а при высокой - угнетающим действием на растения. Расчеты показывают (Волощук, Гапонюк, 1979), что в целом переход стойких органических загрязнителей из почвы в растения выше (35-70 %), чем в воду (12-18 %) и атмосферный воздух (18 %).

В отличие от большинства других стойких органических загрязнителей, которые аккумулируются в корнях растений, выросших на загрязненных почвах, ПАУ распределяются по органам растений более равномерно и даже во многих случаях концентрация загрязнителей в листьях в аналогичных условиях превышает их содержание в корнях. Такое распределение может быть свидетельством биофильности полиаренов для растений (какого-то их функционального предназначения), причем не исключен даже синтез ПАУ в самих растениях (Васильева и др., 2008).

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Понравилась статья? Поделитесь с друзьями!